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Evolution of Darwinian drift
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The evolution of drift with time at a plane normal to the passage of a body from far
right to far left is investigated. It is shown that the measurable part of the drift volume
as a function of time is uniquely determined, and that the indeterminacy of Darwin’s
drift integral simply does not matter to the physical world, in which there is a Darwin
theorem stating that the drift mass is equal to the added mass. The method for
determining the shape of the drift surface is also given.

1. Introduction

Darwin (1953) studied fluid drift in any unbounded irrotational flow caused by a
solid body in steady translation. In the same year Ursell (1953) and Longuet-Higgins
(1953) investigated mass transport in water waves. Darwin’s paper, now famous,
contains the fascinating result that the drift mass is equal to the added mass. Perhaps
stimulated by that result, Lighthill (1956) soon afterwards published a paper on drift in
shear flows, in the first issue of this journal.

On the side that concerns added mass, Taylor (1928) published a result on the
relation between the added mass for the irrotational flow caused by a translating solid
body and the singularities inside the body that create the flow. Taylor’s result was
generalized by Birkoff (1950) and Landweber (1956) into a theorem that now bears his
name. In retrospect, it is remarkable that the few years 1950–56 saw so many
interesting papers on drift and added mass published.

Darwin’s famous result has been, from the beginning, plagued by the fact that his
drift integral, which is prima facie a momentum integral (for unit speed of the body)
does not have a unique value. Darwin (1953) found that if that integral is evaluated
longitudinally first, the drift mass m

d
is equal to the added mass m

a
. This result I call

the Darwin theorem. But other ways of evaluating the integral give other results.
Integrating transversely (to the passage of the body) first gives the drift mass ®ρV, for
instance, where ρ is the density of the fluid and V the volume of the body.

Darwin recognized that the difference between the two results for m
a

and ®ρV is
spread over a very wide area (‘At edges ’, he said), and thus reconciled the two
procedures of obtaining the drift mass. Benjamin (1986), in a paper criticizing mine
(Yih 1985) for not mentioning the indeterminacy of Darwin’s drift integral, which he
emphasized, also corrected Darwin in a footnote about ‘ the edges ’, and said the
difference is spread ‘uniformly’ over the cross-section. Actually it is not spread
uniformly either, but accordingly as the vanishing magnitude of the velocity potential
(denoted by φ« herein), which is a function of the transverse coordinates. We shall show
unambiguously how this difference comes to be infinitely widely spread.

† Professor Chia-Shun Yih died on 25 April 1997 while this paper was being considered for
publication in JFM. He was not able to take account of the comments from referees, and the editors
have decided therefore to publish the paper as it was originally submitted.
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More importantly, however, we shall treat the drift as a function of time, as the body
moves from x«¯¢ to x«¯®¢ with unit speed, and seek to determine the volume and
shape of that drift. This has not been attempted before.

The question of indeterminacy of the drift integral was investigated by Eames,
Belcher & Hunt (1994). They first studied the partial drift at a plane due to a sphere
that started to move at a finite distance x

!
to the right of that plane, and later

generalized their result to apply to a body of arbitrary shape. They reached the same
conclusion that any difference between the drift volume and m

a
}ρ (for large x

!
) is

widely spread, and their analysis and calculations contributed substantially in
illustrating the indeterminancy of the drift integral and in explaining the intricacy of
the Darwin problem.

With (x«, y«, z«) denoting Cartesian coordinates in the fixed frame of reference, we
seek to determine the drift in the (y«, z«)-plane as a function of time t. Clearly the drift
there at the time when the body reaches the position x«¯x

!
is precisely what Eames

et al. removed in determining their partial drift, and the removed part is not small if
x
!
is not large. In any event our aim and point of view are different from those of Eames

et al. Specifically, we shall
(i) show what is the measurable part of the drift as a function of time;
(ii) show how the distribution of the drift can be determined, thereby revealing the

infinitely widely distributed difference of the drift volume (obtained by transverse
integration first) from m

a
}ρ, noted by Darwin, Benjamin, and Eames et al. ; and

(iii) conclude, as a consequence, that to the physical world, or any experimenter or
any positivist follower of Auguste Comte, who would exclude the ‘unknowable’ from
consideration, there is a Darwin theorem.

Instead of determining the drift in the (y«, z«)-plane per se, we take the useful and
expedient alternative of considering the steady flow relative to the body and
determining the volume and shape of the fluid surface, dyed red (say), initially
coinciding with a plane at x«¯®¢ and normal to the x«-axis, as it sweeps toward the
right. By volume we mean the volume† of the fluid between the red surface and the
plane tangent to it at infinity. This volume is exactly the drift volume at the (y«, z«)-
plane, which we sought originally. The chief distinction between streamwise integration
first and transverse integration next is in the values of the integral of φ« (velocity
potential in the fixed frame) at infinite distance from the body. We shall show that in
two extreme procedures the measurable part of the drift is always the same at any time,
making the difference in the drift-volume values obtained by the two procedures
immaterial to the physical world.

In §2, some preliminaries will be given to facilitate later developments, and in §3 we
shall show where the net momentum resides in the two extreme procedures of
integration. This will be useful to us for our main arguments in §4, where we shall reach
our main conclusion.

† It is important to keep in mind that this volume is that of the fluid bounded by the red surface,
the plane to which it is tangent at infinity, and the surface of the body if the body is passing or has
passed through the (y«, z«)-plane. This remark is consistent with all the developments in this paper. The
red surface will, as time passes, wrap more and more tightly around the body, eventually closing at
the rear stagnation point, which will eventually be infinitely far to the left of the (y«, z«)-plane.
Nevertheless the drift volume defined herein is integrable and finite at all times. These facts show the
intricacy of the Darwin problem. They also show the advantage of using the steady flow in the
moving frame, thus avoiding the particle trajectories in the fixed frame, with their fascinating but
somewhat distracting loops, and making the drift volume more visualizable.
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2. Preliminaries

If a body moves with velocity U in translation, the kinetic energy (KE) and the
momentum (M ) of the fluid can be written as

KE¯ "

#
m

k
U #, M¯m

m
U,

where m
k
is the kinetic-energy mass and m

m
the momentum mass. It is well-known that

m
k
is the added mass, commonly denoted by m

a
. The reason for the name ‘added mass ’

is as follows.
If U varies with time t,

d

dt
KE¯m

k
U

dU

dt
¯F

"
U,

where F
"

is the component of the force in the direction of U, with which the body is
doing work to increase the kinetic energy of the fluid. Thus

F
"
¯m

k

dU

dt
.

If the body is symmetric with respect to an axis in the direction of motion, F
"
is the only

non-zero component of the force, and to a person trying to accelerate a body in a fluid,
the fluid seems to provide an added mass to the body. That added mass is exactly m

k
,

as shown by the equation above. It has been denoted by m
a

in the literature, and will
be so denoted here. As to the momentum mass m

m
, it is always equal to the drift mass

m
d
, which we shall define later. But the momentum M is indeterminate (Theodorsen

1941; Birkhoff 1950; Darwin 1953), and that is the burden of this paper.
We shall let U¯®1, so that relative to the body the velocity of the fluid at infinity

is equal to 1. The momentum M will be negative, but m
m

and m
d

will be positive. We
can, to fix ideas, regard the drift mass for any U to be

ρ rdrift volume rU,

which can be positive or negative. Our m
d

is then simply

m
d
¯ ρ rdrift volume r. (1)

We shall not use m
m

explicitly, and shall deal with M directly.
We shall treat the three-dimensional case only, since reduction to the two-

dimensional case can be easily done. Using unit speed amounts to using the body speed
as velocity scale. In a frame moving with the body, we use the coordinates (x, y, z),
which are related to the coordinates in the fixed frame by

x¯x«t, y¯ y«, z¯ z«. (2)

The velocity components in the two frames will be denoted by

(u«, �«,w«) and (u, �,w),

respectively. These are related by

u¯ u«1, �¯ �«, w¯w«. (3)

The speeds q« and q are defined by

q«#¯ u«#�«#w«#, q#¯ u#�#w#. (4)
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Since the flow is assumed irrotational, we have a velocity potential, which will be
denoted by φ« and φ, respectively, in the two frames, related by

φ¯xφ«. (5)

Darwin’s definition of the drift volume (recall that u« is for unit body speed) is

M}ρ¯&&& u«dx«dy«dz«, (6)

which is prima facie a momentum integral divided by the density ρ. The connection
between momentum and drift is through the discharge at x«¯ 0 when the body moves
from x«¯¢ to x¯®¢. To see the connection, note first that φ« and the velocity
components are functions only of (x, y, z). At x«¯ 0, we obtain from (1)

dx¯dt,

and immediately the integral (6) becomes

&& 9 &
¢

−¢

u« dt:dydz, (7)

which is clearly the discharge through x«¯ 0 as t varies from ®¢ to ¢. But this
discharge is exactly the drift volume, and that is why Darwin defined the drift volume
by that integral. With this understanding the equality of the drift mass, which is
kinematic in nature, and the added mass, which is a kinetic-energy mass, is no longer
as puzzling as at first sight, for the connection is through the momentum, which is a
dynamical quantity.

But the drift volume given by (7) is a total discharge. It does not reveal the drift
distance of each fluid particle. A finer understanding of (6) can be had by writing (Yih
1995)

I¯ I
"
®I

#
, (8)

where

I¯&&& [(u®1)#�#w#] dxdydz¯&&& (q«}q)#dφdψdχ, (9)

I
"
¯&&& (1®u) dxdydz¯&&& 0 1

q#

®
¥χ
¥φ1dφdψdχ, (10)

I
#
¯&&& (u®q#) dxdydz¯&&& 0¥χ¥φ®11dφdψdχ. (11)

These differ from the integrals denoted by the same symbols in Yih (1995) only by a
factor ρ. Clearly I

"
is the negative of (6). We use I

"
because for the body moving left

it is positive. The ψ and χ are stream functions for the flow in the moving frame of
reference. These are related to the stream functions (ψ«,χ«) in the fixed frame by

ψ¯ "

#
r#ψ«, χ¯χ«, r#¯ y#z#. (12)

In (10) and (11)

¥χ
¥φ

¯
u

q#

, q#¯
¥(φ,ψ,χ)

¥(x, y, z)
, (13)

since (u, �,w)¯ (φ
x
,φ

y
,φ

z
)¯ gradψ¬gradχ. (14)
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Let us look at the inner integral of I
"
, which is

I
$
¯& 0 1

q#

®
¥χ
¥φ1dφ. (15)

This is the drift distance if the limits of integration are ®¢ and ¢. The first term on
the right-hand side is the time required by a fluid particle to go from φ¯®ρ to φ¯¢,
for any fixed values of ψ and χ, whereas the second term without the minus sign is just
the time required by a kinematic point of velocity 1 to do the same. At infinity u¯ 1.
Therefore, the time difference is the drift distance. We shall, in §4, relate the time
difference to the drift distance when considering drift at a finite time instead of an
infinite t.

3. Integrating the drift integral

The value of the drift integral depends on the shape of the fluid boundary at infinity,
as mentioned before. For the complete Darwin drift and in the moving frame of
reference, we have for the geometry of the fluid two choices :

Choice A: a rectangle of sides 2X and 2Y, enclosing the body in the middle, with X,
Y, and X}Y approaching infinity ; and

Choice B: the same, but with X, Y, and Y}X approaching infinity.
There are, of course, many rectangular shapes between Choices A and B. But treating
the two extreme cases will suffice to make our point.

In practice, the choices defined above can take other forms. For instance, integrating
in an infinite domain with respect to x first, or streamwise first, amounts to taking
Choice A. Doing the opposite amounts to taking Choice B. Taking a domain infinite
longitudinally but limited transversely, integrating in any order, and then letting the
transverse extent expand to infinity amounts to adopting Choice A, whereas doing the
opposite is adopting Choice B. In §4 we shall show that the region of integration is
specified for us, but that there are still two ways of integrating, which amount to A and
B. But first we shall obtain some results by adopting A and B in turn. These are
interesting and will shed some light on the effect of the procedure of summing
momentum on the result obtained. They will also be useful in §4, when we shall
determine the drift volume and shape as functions of time.

3.1. Choice A

Under Choice A, two results are obtainable without ambiguity or controversy.
Consider the domain in a stream tube extending from x¯®¢ to x¯¢. Then

I
#
¯&&& 0¥χ¥φ®11dφdψdχ¯&& [φ«(¢)®φ«(®¢)] dψdχ¯ 0.

The order of integration is now not in dispute, since the tube has finite cross-section.
Thus (8) gives, after recalling that the body is supposed to have unit speed,

T 1. Twice the kinetic energy in any stream tube of finite cross-section
extending from x¯®¢ to x¯¢ in the steady flow relati�e to the body is equal to the
momentum in that tube times the body �elocity, and to the drift mass times the square of
the body �elocity.
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If we integrate over the entire fluid domain, we have Darwin’s theorem, but we also
inherit his dilemma. Now let the stream tube shrink to a streamline. Then (8) gives

& (q«}q)#dφ¯& 0 1

q#

®
¥χ
¥φ1dφ,

with limits of integration (®¢,¢) for both integrals. The right-hand side is the
negative of the drift distance which in our case is to the left. Thus we have

T 2. For the body mo�ing to the left (right), the drift distance is always negati�e
(positi�e).

Note that (15) gives the time delay, which is the negative of the drift distance only
because at x¯¢ the component u is 1. Theorems 1 and 2 support the priority of
Choice A for getting the complete drift volume of Darwin.

We shall now show where the net momentum resides if we take Choice A. Let the
surface of the body be denoted by S

B
, and the boundary of the projection of S

B
onto

the (y, z)-plane be denoted by C. The cylindrical surface with generatrix parallel to the
x-axis and intersecting the (y, z)-plane at C, extending from x¯®¢ to x¯¢, will be
denoted by S

C
. The space bounded by S

B
and S

C
will be denoted by D, and the cylinder

will be called the contact cylinder.
Integrating (10) in D, we obtain

I
"
¯&&φ!

B
n
"
dS

B
, (16)

where (n
"
, n

#
, n

$
) are the components of the unit vector drawn into the fluid on S

B
. This

is exactly the m
a
}ρ for translation with unit speed in the direction of decreasing x. See,

for instance, Landweber (1956) or Landweber & Yih (1956, equation (24)). Therefore

ρI
"
¯m

a
. (17)

Now construct any cylinder parallel to the x-axis and containing the contact cylinder.
Obviously the integration in the x-direction for the momentum between the two
cylinders gives zero as the result, since φ« vanishes at infinity. Thus we have the
following results.

The momentum within any cylinder parallel to the x-axis and containing the contact
cylinder and, in particular, within the contact cylinder itself, is exactly ®m

a
, since the

body moves with unit speed to the left.
This result must have been known to Benjamin (1986), although he cast it in terms

of discharge through a hole in the (y, z)-plane. As a result for mass discharge, it is
entirely correct. But then he interpreted this discharge as the drift mass. That can only
mean that, if one dyes the fluid red in the circular area r¯R (R is Benhamin’s notation
for the radius of the ‘hole ’) at x«¯ 0, and lets the body move from x«¯®¢ to x«¯¢
according to Benjamin’s scheme, the volume under the red cap, or the volume bounded
by it, the (y«, z«)-plane, and the cylindrical wall projecting the red cap onto that plane,
will, when the body reaches x«¯¢, be the drift volume. But there is flow through the
wall, so that the said volume will not be the total discharge from t¯®¢ to t¯¢, and
will therefore not be m

a
}ρ. The error disappears only if R¯¢, for which one obtains

m
d
¯m

a
by integrating with respect to x first. But then Benjamin would be using the

very procedure he was criticizing. He was too consistent for that. Thus the error
remains. The footnote on p. 253 of Benjamin’s (1986) paper indicates strongly that he
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was aware of this difficulty, but being aware of it was not to resolve it. Eames et al. also
claim that Benjamin was in error. But I do not agree with their statement that the error
is traceable to the passage from Benjamin’s equation (5) to his (6). After all, a tube of
finite radius was being considered by Benjamin. The passage from his (3), (4), and (5)
to (6) is correct, and so is his (6).

Equation (17), interesting as it is, does not give the distribution of the drift distance.
To find that we have to use (15).

3.2. Choice B

In the moving frame, let two planes

x¯x
"

and x¯x
#

just enclose the body, so that x
"
is negative and x

#
positive. The momentum of the fluid

in the domain bounded by these planes and the body can be evaluated in two ways. The
results are the same, since the domain has finite width. Integrating with respect to x
first, we have, by virtue of (16) and (17),

I
"
¯®I

R
I

L
&&φ«n

"
ds

B
¯®I

R
I

L
m

a
}ρ, (18)

where I
R

¯&&φ«(x
#
) dydz and I

L
¯&&φ«(x

"
) dydz,

and the dependence of φ« on y and z is implied.
On the other hand, if we integrate with respect to y and z first, we have

I
"
¯®&&& ¥(ψ«,χ«)

¥(y, z)
dydzdx¯&Qdx (19)

where Q¯®&&dψ«dχ«.

At any x, as we integrate from the body outward to infinity, where ψ«¯ 0, the inner
integral Q is

Q¯&#
π

!

ψ«(x) dχ«(x).

But this is exactly

&&dψ!
B

dχ!
B

over the part of S
B

from x
"
to x, and is therefore the discharge across that part of S

B
,

which is, by the boundary condition of the flow on S
B
, exactly equal to ®A(x), where

A(x) is the cross-sectional area of the body at x. Hence

I
"
¯®&A(x) dx¯®V. (20)

Recalling that ρI
"
is the negative of the momentum, this means that the momentum is

V for body velocity ®1, which is also the drift mass, now a reflux.
Equating (19) and (20), we see that

I
R
®I

L
¯Vm

a
}ρ. (21)
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Now take any plane
x¯x

$
!x

"
.

It can be shown as in the foregoing that the momentum between the planes at x
$
and

x
"

is zero. Therefore
I
L
(x

"
)¯ I

L
(x

#
). (22)

Similarly I
R
(x

#
)®I

R
(x

%
) for x

%
"x

#
. (23)

Equations (22) and (23) are true however large ®x
$
and x

%
are. The conclusion for

Choice B, then, is that the net momentum resides in the space bounded by the planes
touching the body. But even in the limit, at infinity, the integrals I

L
and I

R
are not zero.

The results according to Choice B may be counter-intuitive. For instance, equation
(20), however understandable from the point of view of drift, seems strange from the
dynamical point of view, since the integral also represents momentum. Another result
that seems strange is that a plate of no thickness moving broadside-on will give the fluid
no momentum, according to Choice B. But, strange as they may seem, no law of
mechanics is violated, even if one considers the motion to have started from rest. (In
that case there is a net force at infinity for Choice B.) Thus there does not seem to be
any hope at all that a rigorous proof exists for a unique way of evaluating the
momentum integral.

We have seen that the momentum between any two planes both to the left or both
to the right of the body is zero. The momentum in

®¢%x% ξ, x
"
% ξ%x

#

and extending to infinity laterally is equal to V(ξ ), which denotes the volume of the
body to the left of x¯ ξ. For ξ&x

#
, the total momentum up to x¯ ξ is always ρV.

These results will be useful for the next section.

4. Calculation of drift as a function of time

We recall that for the entire fluid we can go from the momentum integral (6) to the
integral (7), thereby interpreting (6) as the drift integral as well. Suppose now the range
of integration is

®¢%x% ξ. (24)

Then, since x¯x«t, at x«¯ 0 the right-hand side of (6) converts to

&& 9 &
ξ

−ρ

u«dt:dydz, (25)

which is the drift from the (y, z«)-plane in the period ®¢% t% ξ, or the drift when the
(centroid of the) body is at distance ®ξ to the right of the (y«, z«)-plane. It is also
the drift volume under the red surface defined in this section, since the body is at the
distance ®ξ to the right of the plane where drift is calculated. The study of the
evolution of drift is then reduced to the evaluation of the momentum integral I

"
(®ρI

"
¯momentum), in the steady flow relative to the body.

The region of interest for time evolution of drift is then (24). We shall let the
transverse extent (for φ« and x¯®¢) be infinite to start with. We can still distinguish
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Choice A from Choice B, because if one integrates streamwise first, one has φ«¯ 0 at
x¯®¢, and its integral with respect to y and z will be zero, whereas if one adopts
Choice B one has

lim
XU¢

&φ«(X, y, z) dydz¯®"

#
(Vm

a
}ρ), (26)

which is related to the Taylor theorem mentioned before. But that is the only difference.
Streamwise integration is necessary for both choices, since the calculation of drift is
inherently a streamwise affair. If one keeps in mind this only difference, one can adopt
Choice A and take the integral (26) into account later, in order to get the result for
Choice B. The integrand of (26) is obviously very small at any large finite X, so that
(26) is the limit of an integral of a widely spread and vanishing integrand.

For
®¢%x% ξ%x

"
,

integrating I
"

from ®¢ to ξ gives, with Choice A,

I
"
¯®&&φ«(ξ, y, z) dydz. (27)

This integral is constant (see the development for Choice B) when ξ%x
"
, i.e. when

the region of interest does not include any part of the body. The integral can be
evaluated at large values of rξ r, from that part of φ« corresponding to a doublet in the
body, and is given by (26). Thus, for Choice A,

I
"
¯ "

#
(Vm

a
}ρ) for ξ%x

"
, (28)

I
"
¯ "

#
(Vm

a
}ρ)®V(ξ ) for x

"
% ξ%x

#
, (29)

I
"
¯®&&φ«(ξ, y, z) dydzm

a
}ρ¯®"

#
(Vm

a
}ρ)m

a
}ρ for ξ&x

#
. (30)

For Choice B, we need to add the term (26) to the right-hand sides of the formulas
above. Then I

"
is zero for ξ%x

"
, gradually changes to ®V at ξ¯x

#
, and remains ®V

thereafter, in agreement to the results given in §3. We emphasize that the term (26) is
not measurable. Thus the measurable part of the drift volume is exactly the same,
whether we choose procedure A or B, and the time evolution of the drift volume in the
(y«, z«)-plane is given by (28)–(30). Equation (29) shows that for a sphere or a
comparable shape of the body (i.e. excluding shapes like plates) there is a reflux upon
the passage of the body through the (y«, z«)-plane. This is in general agreement with the
finding of Eames et al. (1994). Note that as ξU®¢ the I

"
given by (27) becomes less

and less measurable. The same is true of the integral in (30) as ξU¢. For an
experimenter measuring with an instrument of high but not infinite precision, the
measured drift volume for ξ!x

"
will not be constant, but will vary smoothly from zero

to the value (28) in the finite part of the plane. Similarly, as ξU¢, the measurable
value of the integral in (30) will decrease from the value given for it in (30) to zero
smoothly, leaving eventually only the measurable part m

a
}ρ. This enables us to say that

in the physical world m
d
¯m

a
, so that there is a Darwin theorem.

The drift volume given by (28)–(30) gives no indication of the distribution of drift,
i.e. the shape of the red surface. For that we have to calculate the drift distance and
its location – that is, the values of y and z at which to ‘erect ’ the drift distance. The
distribution of the drift distance is indeed very different from that of φ« in (7).
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The procedure for determining the shape of the drift surface is as follows.
(i) Calculate the stream functions ψ and χ, and draw the streamlines. At x¯ ξ,

determine y(ξ,ψ,χ) and z(ξ,ψ,χ). At this stage, it is usually more convenient to take
any y and z at x¯ ξ and calculate ψ and χ instead.

(ii) For any streamline, i.e. for any specified value of ψ and χ, calculate the time-lag
integral I

$
given by (15), with limits of integration ®¢ and ξ. This is the additional

time ∆t needed for a particle on that streamline to go from x¯®¢ to x¯ ξ, in
comparison with a kinematic point of unit velocity to travel the same distance in x.
Instead of using (15) as it is, of which each of the terms is infinite, although their
difference is integrable, we may revert to

I
$
¯®&

φ(ξ)

−¢

(u«}q#) dφ (31)

for each streamline. In (31) φ(ξ ) is the short form for φ(ξ,ψ,χ). We may choose to
convert (31) into an integral in x, or, for axisymmetric flows, one in r.

(iii) For the same streamline, select the fluid particle at x¯ ξ, and find the location
of this particle at time t¯ ξ by calculating from its location at x¯ ξ, where
t¯x¯ ξ∆t, to its location at t¯ ξ. Given the flow, the velocity components are
known on the streamline, and what we have to do is to determine, along that
streamline, the drift distance d(ξ,ψ,χ) so that

∆t¯&
ξ

ξ−d

dx

u
, (32)

where d is the drift distance. Once d is known, the location of the particle on the chosen
streamline at t¯ ξ is known, and we know where to put or ‘erect ’ that distance to get
the shape of the drift surface.

We note that the time lag can be written by virtue of (8), as

&
φ

−¢

(q«}q)#dφ®φ«(ξ,ψ,χ)φ«(®¢,ψ,χ).

This form probably has more interpretive value than computational value, but it does
show that unless the second term is sufficiently positive and sufficiently large, there is
no local reflux. It also shows that for ξ¯¢ the term φ(ξ,ψ,χ) vanishes, indicating an
infinitely widely distributed φ« of vanishing magnitude which makes no contribution to
the drift distance, even through at large ξ its integral over a (y, z)-plane at x¯ ξ is not
zero. The same thing can be said of the term φ«(®¢,ψ,χ). Thus, as far as the
completed drift distance is concerned, only the first term above makes a contribution.
This term is positive-definite, and is associated with the kinetic energy of the flow.

When the drift surface for t¯ ξ
!

(say), or for ξ¯ ξ
!

has been obtained, we may
switch to the Lagrangian approach if we prefer. Then for ξ" ξ

!
, we have, on each

streamline

&x(ξ)

x(ξ!)

dx

u
¯ ξ®ξ

!
, (33)

where x(ξ
!
) is the x-position of the marked particle at time ξ

!
. Once x(ξ ) is determined,

the position of the particle on the streamline at time ξ is known. The drift surface at
time ξ is thus determined.
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5. Concluding remarks

The main points and results of this paper are as follows.
(i) The drift shape and the measurable part of the drift volume can both be uniquely

determined. The indeterminancy of Darwin’s drift integral does not matter to the
physical world, in which there is a Darwin theorem, which says m

d
¯m

a
.

(ii) The evolution of the drift volume as a function of time at a plane normal to the
passage of the body is explicitly given. It can show a reflux as the body passes through
that plane, but the measurable part eventually becomes ma}r.

(iii) The method for determining the shape of the drift surface at any time is given.
The indeterminancy of Darwin’s drift integral has been troubling us for more than

four decades, and many researchers have devoted much effort in attempting to find its
resolution. I do not think it is possible to show mathematically, as demanded implicitly
by Benjamin (1986), that one procedure (integrating streamwise first, for instance) is
the only correct and allowable way of evaluating that integral. But, as shown herein, the
difference between the drift volumes obtained by two extreme procedures simply does
not matter to the physical world. In the course of this work I have been understandably
reminded of a saying attributed to Einstein. I do not recall the exact words, but the
substance is

‘Nature may be subtle, but She is not malicious. ’
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